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ABSTRACT

Past studies have shown that accurate soil moisture initialization can contribute significant skill to

near-surface air temperature (T2M) forecasts at subseasonal leads. The mechanisms by which soil

moisture contributes such skill are examined here with a simple water balance–based model that captures the

essence of soil moisture behavior in a state-of-the-art subseasonal-to-seasonal (S2S) forecasting system. The

simplemodel successfully transforms initial soil moisture contents into average ‘‘forecast’’ evapotranspiration

(ET) values at 16–30-day lead that agree well, during summer, with the values forecast by the full NASA

GEOS S2S system, indicating that soil moisture initialization dominates over forecast meteorological con-

ditions in determining ET fluxes at subseasonal leads.When the simplemodel’s ET anomalies are interpreted

in terms of T2M anomalies, a similar conclusion is reached for T2M: soil moisture initialization explains much

(about 50% in the eastern half of the continental United States) of the T2M anomaly values produced by the

full GEOS S2S system at 16–30-day lead, and the T2M forecasts produced by the simple model capture about

one-half of the skill attained by the full system. The simple model’s framework is particularly conducive to an

analysis of uncertainty in forecasts. Drier soils are generally found to induce larger uncertainty in ET (and

thus T2M) forecasts, a result linked to the functional form relatingET to soil moisture in the simplemodel and

verified by an analysis of the ensemble spreads within the forecasts produced by the full GEOS S2S system.

1. Introduction

The ability to forecast anomalies in meteorological

variables such as precipitation and air temperature can

provide substantial benefits to society. Accurate fore-

casts can provide information with regard to, for ex-

ample, upcoming water supply deficits or temperature

extremes, potentially giving various socioeconomic sectors

the time that they need to implement damage-mitigation
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strategies. Complex, coupled numerical models of Earth

system processes have accordingly been constructed to

produce meteorological forecasts at various lead times.

Weather forecast systems, for example, focus on pro-

viding meteorological anomalies out to about 10 days,

largely deriving their skill from the initialization of the

atmosphere (e.g., Leutbecher and Palmer 2008; Zhang

et al. 2019). In contrast, seasonal forecast systems

(Doblas-Reyes et al. 2013) extract most of their skill

from the initialization and subsequent modeling of the

slower components of the Earth system, such as the

ocean circulation (Shukla 1998).

Subseasonal time scales (forecast leads from;2 weeks

to ;2 months), which lie between the weather and sea-

sonal time scales, are gaining increased attention from

forecast system developers (e.g., Robertson et al. 2015;

Vitart et al. 2017; Pegion et al. 2019). Commonly cited

sources of subseasonal predictability include climatic

phenomena such as the Madden–Julian oscillation (e.g.,

Kim et al. 2018) and stratospheric impacts on the North

Atlantic Oscillation (e.g., Scaife et al. 2016). Another

important source of skill is soil moisture in the root zone,

which has a time scale on the order of a month (Entin

et al. 2000; Seneviratne et al. 2006)—longer than stan-

dard weather time scales and yet shorter than the time

scales of ocean circulation. Through soil moisture mem-

ory, an initial soil moisture anomaly in a forecast system

can be ‘‘remembered’’ into the forecast and can thereby

affect atmospheric processes atweather, subseasonal, and

perhaps even seasonal time scales (e.g., Dirmeyer and

Halder 2017; Koster and Suarez 2003). The ability of soil

moisture to influence forecasts in this way is cited as amajor

motivation for recent space-based soil moisture measure-

ment missions (Entekhabi et al. 2010; Kerr et al. 2010), and

it also motivates some key activities in the international

World Weather Research Programme/World Climate

Research Programme Subseasonal to Seasonal Prediction

Project (http://s2sprediction.net/file/documents_reports/

P2_Pro.pdf).

The contribution of soil moisture initialization to skill

in subseasonal forecasts was addressed extensively in

the Global Land Atmosphere Coupling Experiment,

Part 2 (GLACE-2; Koster et al. 2010, 2011; van den

Hurk et al. 2012). In GLACE-2, a number of forecast

systems performed two suites of hindcast experiments:

one that used realistic soil moisture initialization, and

the other (which was otherwise identical) using unreal-

istic initial soil moistures (e.g., from a randomly chosen

year). By comparing the forecast skill generated in the

two suites of hindcasts, the subseasonal skill derived

from soil moisture initialization was isolated and quan-

tified. GLACE-2 revealed a significant contribution of

soil moisture initialization to the skill of forecasting 2-m

air temperature (T2M) during boreal summer at leads

out to 45 days. The contribution to precipitation fore-

cast skill was much more modest. GLACE-2 further

demonstrated that T2M forecast skill increased when

soil moisture anomalies at the start of a forecast were

particularly large.

The experimental strategy underlying GLACE-2 is

effective for quantifying soil moisture impacts on fore-

cast skill in a given forecast system. What the strategy

cannot provide, however, is physical insight into why the

soil moisture-related skill is large in some places (or days

of year) and not in others or why some soil moisture

initial states may produce forecasts with smaller uncer-

tainty. To answer such questions, we would need to

understand what controls the evolution of soil moisture

over the course of a forecast. How do evapotranspira-

tion (ET), drainage, and the infiltration of precipitation

modify soil moisture with time, given that the efficien-

cies of these fluxes are themselves a function of soil

moisture content?

One simple approach to examining such soil mois-

ture dynamics is through the characterization of a soil

moisture ‘‘memory’’ using a calculated autocorrelation

in time (e.g., Delworth and Manabe 1988; Vinnikov and

Yeserkepova 1991; Entin et al. 2000). Such a quantifi-

cation carries with it the assumption of a linear reservoir,

meaning that the rate at which a soil moisture anomaly is

reduced (through ET or drainage) is assumed to vary

linearly with the soil moisture anomaly itself. There is

certainly a benefit to characterizing memory with a

single time scale, as it allows a first-order indication of

how long a soil moisture anomaly will last into a forecast

period and how this duration might vary between loca-

tions. Seneviratne et al. (2006) used such an approach

to evaluate the soil moisture memory simulated in land

models against that derived from in situ soil moisture

measurements.

The true dynamics of soil moisture, however, are

much more complicated. The ET sink for soil moisture

does not vary linearly with soil moisture, instead be-

having differently according to hydroclimatic regime. In

the drier regime, ET rates are limited by soil moisture

availability so that ET increases with increasing soil

moisture; in contrast, in the wetter regime, soil moisture

is not limiting, and ET is effectively insensitive to soil

moisture variations (e.g., Manabe 1969; Eagleson 1978;

Dirmeyer et al. 2006). Runoff production can also

vary nonlinearly with soil moisture, with particularly

high drainage rates seen when the soil is very wet (e.g.,

Salvucci 2001). [See Shellito et al. (2018) and McColl

et al. (2017) for additional recent takes on the nuanced

character of soil moisture drydown.] This nonlinearity

complicates our understanding of soil moisture dynamics,
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as does the joint response of ET and runoff to soil

moisture variations. Indeed, it is this joint response

that largely determines a land surface model’s overall

behavior (Koster and Milly 1997; Koster and Mahanama

2012). The hypothesis of the present paper is that by

considering together the nonlinear relationships that

link both ET and runoff to soil moisture, we can shed

new light on our understanding of soil moisture impacts

on subseasonal forecast skill.

In principle, we could analyze such effects through a

careful study of the land model’s governing equations.

This approach, however, is made intractable by the com-

plexity of the codes used in current forecast systems. The

‘‘average’’ relationships between soilmoisture and bothET

and runoff within these systems are in fact the net product

of multiple interconnected and complex process parame-

terizations, and their interactions cannot be ascertained a

priori with any confidence. Fortunately, the average rela-

tionships can be quantified and examined relatively easily

by processing model output diagnostics (e.g., Koster et al.

2019; Koster 2015). Once the average relationships are

established, their impact on soil moisture evolution can

be evaluated by building a simple model around them

and then using it to evolve a soil moisture state forward

in time, under a range of atmospheric forcing scenarios.

We employ this approach in this paper: we analyze soil

moisture and ET behavior during a subseasonal forecast

by first quantifying the average relationships underlying

the land surface model utilized in the full forecast system

and then applying them within a simple model to time

series of precipitation and net radiation representative of

the forecast period. Clearly, such a simple model cannot

capture all facets of the forecast system—it can never

capture, for example, the ability of remote sea surface

temperatures to provide forecast skill through atmospheric

teleconnections. What it can do, though, is capture that

part of the full forecast system specifically related to soil

moisture initialization and its impacts. Capturing this spe-

cific aspect in isolation allows the simplemodel to illustrate

how soilmoisture initialization contributes to forecast skill.

Section 2 describes the approach used to estimate the

average relationships and the construction of the simple

model built around them. Section 3 then follows with

results–with a demonstration that the simplemodel does

capture the behavior of the more complex seasonal fore-

cast system and that it can be used to illustrate the impact

of soil moisture initialization on subseasonal forecast skill.

Section 4 provides a summary and additional discussion.

2. Data and methods

In essence, the analysis below utilizes a full atmospheric

reanalysis (MERRA-2; section 2a) to characterize the

behavior of both the land surface and its meteorological

drivers, and it then uses this characterization as the basis

for a simple water balance framework that can produce

estimates of evapotranspiration and air temperature

at subseasonal leads (sections 2b and 2c). The results

of the simple framework’s forecast simulations are in

turn used to understand the behavior of a fully coupled

subseasonal-to-seasonal forecast system (section 2d).

a. The MERRA-2 reanalysis

The Modern-Era Retrospective Analysis for Research

and Applications, version 2 (MERRA-2), produced by

the Global Modeling and Assimilation Office (GMAO)

at the National Aeronautics and Space Administration’s

Goddard Space Flight Center (NASA GSFC), is a state-

of-the-art atmospheric reanalysis that provides a com-

prehensive and self-consistent picture of atmospheric and

land surface fields over the period 1980–present (Gelaro

et al. 2017). MERRA-2 combines a wealth of conven-

tional and satellite-based measurements (McCarty et al.

2016) together within a global atmosphere–land surface

modeling environment [the Global Earth Observing

System (GEOS) model; Molod et al. 2015] that serves to

translate in space and time the information contained in

the observations and also to impose additional physical

constraints on the evolution of the meteorological fields.

MERRA-2, unique among existing atmospheric reanalyses

in its utilization of aerosol information (Randles et al.

2016), has been evaluated extensively against indepen-

dent observational datasets (Bosilovich et al. 2015).

The present analysis uses daily-averaged MERRA-2

data on a 0.58 latitude3 0.6258 longitude grid. We use in

particular the following land surface data: ET, runoffQ,

and average profile soil moistureW from GMAO (2015a),

precipitation P from GMAO (2015b), net radiation Rnet

from GMAO (2015a,c), and 2-m air temperature (T2M)

fromGMAO (2015d). The precipitation falling on the land

surface during the MERRA-2 integration included correc-

tions from rain gauge networks (Reichle et al. 2017), which

are accordingly built into MERRA-2’s ET andW fields.

b. The projected evapotranspiration

1) A SIMPLE MODEL FOR ESTIMATING SOIL

MOISTURE EVOLUTION

The simple model used in this study is based on the

equation for the daily water balance of a soil column:

CW
n11

5CW
n
1P

n
2ET

n
2Q

n
, (1)

where C is the water-holding capacity of the soil profile,

the subscript n is the day index, Wn is the average soil

moisture content (degree of saturation) over the profile
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at the start of day n, and Pn, ETn, and Qn are the accu-

mulated values of P, ET, andQ on day n. (The value for

C in the simple model is calculated here as a bedrock

depth times a nominal porosity of 0.45, with the bedrock

depth distribution taken from the GMAO S2S system.

Across the continental United States, the water-holding

capacity varies from a few hundred mm to almost

2000mm, as illustrated in Fig. S1 in the online supple-

mental material.) We now assume that both ET and Q

can be estimated from the current soil moisture content

and from the net radiation and precipitation forcing:

ET5F
E
(W)R

net
/l and (2)

Q5F
Q
(W)P , (3)

where l is the latent heat of vaporization. Substituting

Eqs. (2) and (3) into Eq. (1) produces

CW
n11

5CW
n
1 P

n
2F

E
(W

n
)R

net:n
=l2F

Q
(W

n
)P

n
,

(4)

an equation that allows soil moisture to evolve through

the application of only two atmospheric forcing vari-

ables (P and Rnet) and a predetermined description

[through FE(W) and FQ(W)] of the hydrological be-

havior of the soil column.

The function FE(W), which is the relationship be-

tween evaporation efficiency (lET/Rnet) and soil mois-

ture for a given location and day of year, is not assigned

an analytical functional form.Rather, it is simply estimated

by plotting daily MERRA-2 values of W and lET/Rnet

against each other on a scatterplot and then determining

the piecewise linear function that connects 10 binned

averages of lET/Rnet. An example for a U.S. grid cell in

Iowa (91.258W, 42.58N) is shown in Fig. 1a. Each point in

the plot represents a pair ofW and lET/Rnet values for a

day lying within the period 15 June–16 July of some year

during 1980–98. The piecewise function fitted through

the points is the diagnosed form ofFE(W) for 1 July. (We

extract data from the 31-day window surrounding this

date to increase the sample size from which the function

is computed. The 10 soil moisture bins used for the av-

eraging are defined so that each bin contains the same

number of points. Such curves are recomputed for each

day of the year, each time using a date-specific 31-day

window.) Note that the function’s shape is consistent

with the idea that ET is sensitive to (increases with) soil

moisture at the dry end and is relatively insensitive to

soil moisture at the wet end, where it is instead con-

trolled by energy availability (section 1). Similar curves

were successfully derived from MERRA-2 data for the

flash drought analysis of Koster et al. (2019), although

without the normalization of ET by net radiation in that

application.

Note that in tying ET to average profile soil moisture

rather than to root zone moisture, we are assuming, in

effect, that the average profile soil moisture represents

well the average moisture in the 1-m-deep root zone.

This is not a poor assumption for this particular land

model, which is known to have strong coupling among

its soil water states (e.g., Kumar et al. 2009). We mainly

FIG. 1. The (a) evaporation efficiency or (b) runoff efficiency (y axis) plotted against the

average degree of saturation in the soil profile (x axis). Each black dot represents data from

MERRA-2 at a sample location for a single day between 16 Jun and 16 Jul during the period

1980–99. The red curve shows the binned fit to the data; linear extrapolation is used for soil

moisture values lying outside the range captured by the red curve.
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make this assumption here because MERRA-2 data

holdings do not include information on moisture flux

between the root zone and deeper layers, which pre-

cludes the use of the root zone as the control volume in

the water balance analysis. We show below that, in any

case, our use of profile soil moisture does successfully

allow the effective estimation of ET when precipitation

and net radiation forcing are known.

Figure 1b illustrates, for the same location and day of

year, the corresponding estimation of the soil moisture–

runoff ratio relationship FQ(W) from MERRA-2 data.

The binned fit here captures reasonably well an average

model relationship underlying the individual data points.

The expected nonlinear character of the relationship

(concave upward; Koster 2015) can be seen at the wet

end of the soil moisture range.

Given the scatter seen in both panels of Fig. 1, it is

appropriate to evaluate the effectiveness of these curves.

As a simple test, we apply (4) to MERRA-2 data during

each May of 1999–2015, using the framework outlined

in Fig. 2a. Soil moistures were initialized on 1 May with

values for that day from the MERRA-2 product, and

Eq. (4) was then used with dailyMERRA-2 precipitation

and net radiation data for that May to update the soil

moistures over the course of the month. As this in-

tegration proceeded, we averaged the ET fluxes over

16–30 May:

EstimatedET5
1

15
�
30

n516

F
E
(W

n
)R

net:n
=l . (5)

We then compared the ET estimates so obtained di-

rectly with the ET product inMERRA-2 for that period.

If the approximations in Eqs. (2) and (3) are reason-

able, the estimated and actual 15-day ET averages

should agree. The top panel of Figure 3 shows a map,

over the continental United States, of the square of the

correlation coefficient r2 between the 17 (one for each

year between 1999 and 2015) 15-day ET averages esti-

mated in this fashion and the corresponding averages

computed directly from theMERRA-2ET product. The

bottom panel of Figure 3 shows the corresponding map

of the RMSEof the evapotranspiration estimates relative

to the MERRA-2 values. The r2 values lie close to 1

throughout most of the conterminous United States

(CONUS), and the RMSE values generally lie below

FIG. 2. Schematic of the calculation approach: (a) Approach underlying Eq. (5), allowing the calculation of ET with the simple

model when the precipitation and net radiation forcing are perfectly known (fromMERRA-2). (b) Approach for computing ProjET

via Eq. (6). Notice that no observed meteorological data from within the forecast periods of 1999–2015 are used in the ProjET

estimation procedure.
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0.25mm day21. Together, the two maps indicate that,

despite the scatter seen in Fig. 1, Eq. (4) is indeed a vi-

able means of estimating ET if theRnet and P time series

are known and the underlying FE(W) and FQ(W) rela-

tionships are reasonably estimated.

2) CALCULATING THE PROJET

The ‘‘projected evapotranspiration’’ (hereinafter re-

ferred to as the ProjET) is an estimate of the local ET

that will occur in a forecast simulation at a predefined

lead. Specifically, as examined here, the ProjET is a

predetermined (i.e., preforecast) estimate of the av-

erage ET (mm day21) to be experienced on days 16–30

of the forecast. We will use Eq. (4) to produce our

ProjET estimates for the 1999–2015 forecast period (see

section 2d) after deriving the functional formsFE(W) and

FQ(W) from independent (1980–98) MERRA-2 data.

Of course, at the start of a forecast, we cannot know

the daily values of Rnet and P that will be experienced

by a region. Indeed, forecasts of rainfall at subseasonal

time scales are notoriously poor. We do have available,

however, a suite of Rnet and P time series that are con-

sistent with each other and are appropriate for the re-

gion and day of year: the time series experienced by that

region following the start date in question during each of

the 19 years in 1980–98, the subset of MERRA-2 inde-

pendent of the 1999–2015 forecast period. As indicated

in Fig. 2b, we can initialize the simple water balance

model with a soil moisture value for, say, 2005 (taken

from MERRA-2 2005 holdings) and then integrate

Eq. (4) for 30 days 19 different times, each time using a

different set of Rnet and P time series extracted from the

1980–98 period. This procedure results, using Eq. (5),

in a set of 19 values of estimated ET, fromwhich a single,

average value of ProjET can be computed:

ProjET5
1

19
�
19

k51

"
1

15
�
30

n516

F
E
(W

n,k
)R

net:n,k
=l

#
, (6)

where n is again the day index (covering days 16–30 of a

forecast) and k is the year index for the Rnet and P time

series forcing.

This approach not only gives us an estimate (the

ProjET) of the average ET occurring at a grid cell

during the second 15-day period of the subseasonal

forecast, it also provides an indication of the uncer-

tainty of this estimate, as represented by the spread of

the 19 contributing values in Eq. (6). (This will be

explored further in section 3d.) Notice also that the

ProjET estimate relies solely on the initial soil mois-

ture, the estimated FE(W) and FQ(W) relationships,

and the suite of forcing time series taken from the

independent time period—no information from the

forecast period itself goes into the calculation. Of

course, the actual ET during that 15-day period will

differ from the ProjET since it will reflect the Rnet and

P time series that actually occurred during the fore-

cast period. Still, the ProjET can arguably be consid-

ered the best guess for this ET flux in the absence of

knowledge about these forcing time series.

c. Application of ProjET to temperature
anomaly estimation

Variations in ET are known to induce variations in

surface air temperature (T2M), particularly in the

drier regime, wherein ET is controlled by soil moisture

variations rather than by variations in atmospheric

demand (Seneviratne et al. 2010). The mechanism is

straightforward: more evapotranspiration induces more

evaporative cooling of the land surface, which translates

FIG. 3. (top) The square of the correlation coefficient (r2)

between 15-day-average ET values from MERRA-2 and the

corresponding ET estimates produced by the simple model when

the meteorological forcing (precipitation and net radiation) is itself

taken from MERRA-2. The daily ET values were averaged over

16–30 May (for each year during 1999–2015); the simple model

was integrated forward starting from soil moisture conditions

on 1 May. Any r2 value greater than 0.46 is significantly different

from zero at the 99.9% level. (bottom) As in the top panel, but for

the RMSE metric.

1710 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/08/21 07:37 PM UTC



to a cooling of the overlying air. Stated another way, for

the land surface to experience a positive evapotranspi-

ration anomaly ET0 over a period of time Dt, it must

utilize additional energy in the amount of lET0Dt, and,
by the principle of energy conservation, this energymust

come from somewhere—from some combination of re-

duced net radiation, reduced outgoing sensible heat,

and the reduced storage of energy at the land surface

(i.e., a reduced land surface temperature). Given that a

reduced sensible heat leads to a reduced heating of the

air and that the air temperature is, in any case, strongly

tied to the surface temperature, the latter two reductions

in particular suggest that a positive ET anomaly should

contribute to a reduced near-surface air temperature

relative to climatology.

Our simple framework for producing ProjET is based

on a water balance equation and thus ostensibly has little

to do with the estimation of temperature. As argued

above, however, evapotranspiration and air tempera-

ture anomalies should be related. As a crude first ap-

proximation, we will assume a proportional relationship

between the two:

DT2M 5aDProjET, (7)

where a is some unspecified negative constant [whose

value, in fact, can remain unspecified given our use

(see below) of the r2 metric] and D refers to the

anomaly relative to climatology for the given location

and day of year. Nonlinearities in the energy balance

equation may, of course, strongly limit the accuracy of

Eq. (7), as may the fact that ProjET for a given loca-

tion and day of year varies only with initial soil

moisture, so that the approximation in Eq. (7) ignores

other potential influences (e.g., warm incoming winds)

on air temperature. Such issues, however, would

presumably only reduce the effectiveness of Eq. (7).

Arguably, then, any r2 skill seen in the comparison of

aProjET anomalies with forecast T2M anomalies de-

spite these deficiencies can thus be considered a lower

bound on the ability of soil moisture to affect forecast

air temperature at subseasonal leads—presumably, an

equation that more accurately captured the operating

nonlinearities in the energy balance equation would

only perform better.

For context, Fig. 4 shows, for June–August, the square

of the correlation between 15-day averages of ET and

T2M. Data for both variables are taken from MERRA-

2, and the seasonal cycles of both are removed prior to

computing statistics. Values are zeroed if ET and T2M

are positively correlated, which would indicate (for ex-

ample) that variations in net radiation are driving both

atmospheric temperature variations and ET variations

(a behavior relevant to the wetter regime) rather than

that ET variations are driving temperature variations.

The r2 values in Fig. 4 are nonzero in the southern half

of CONUS and are relatively large in the lower third,

with values of about 0.6 in Texas. Figure 4 indicates

where we might expect our treatment of soil moisture

and ET to indeed have some relevance to subseasonal

T2M forecasts.

d. GMAO subseasonal forecasts

After analyzing the character of the ProjET estimates

in section 3a, we will, in section 3b, apply our findings

to the analysis of full subseasonal forecasts. We examine

in particular a series of forecasts (actually a series of

hindcasts) produced with the GMAO’s Subseasonal-to-

Seasonal (S2S), version 2, prediction system (Molod

et al. 2020), which consists of a fully coupled ocean–

atmosphere–land–sea ice model initialized through

the application of a weakly coupled Atmosphere–Ocean

DataAssimilation System. Two aspects of the landmodel

component of the forecast system [the Catchment

FIG. 4. Square of the correlation coefficient between 15-day-average T2M and 15-day av-

erage ET, with the 15-day averages taken from the June–August period during 1999–2015.

Values are zeroed if T2M and ET are positively correlated.
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model of Koster et al. (2000)] are worth emphasizing

for this study: (i) the Catchment model is also used for

MERRA-2, so that the functional forms FE(W) and

FQ(W) extracted from MERRA-2 data holdings also

apply to the S2S system, and (ii) during the analysis that

underlies the initialization, the precipitation applied to

the Catchment model is scaled to agree with a gauge

data product (Reichle et al. 2017), so that the initial soil

moisture anomalies used in the forecasts are, to first

order, realistic.

The particular series of forecasts (hindcasts) exam-

ined in this study are those produced by the GEOS S2S

system for the multimodel SubX subseasonal project

(Pegion et al. 2019). We focus here mainly on the SubX

forecasts initialized on 5 June, 20 June, 5 July, 20 July,

4 August, and 19 August during each of the years be-

tween 1999 and 2015. This provides us with 102 inde-

pendent warm-season (for CONUS) forecast periods,

each period covering forecast days 16–30. We focus

specifically on the average evapotranspiration rates and

T2M values produced in each forecast, averaging their

16–30-day values across the forecast’s four ensemble

members after regridding the 0.58 3 0.58 forecast data
onto the 0.6258 3 0.58 grid used for MERRA-2 diag-

nostic products.

e. Verification data and skill metrics

For the purposes of evaluating the SubX ET forecasts

and the ProjET estimates produced with the simple

modeling framework, we will utilize as ‘‘observations’’

the MERRA-2 ET product. In some ways this is inap-

propriate, since a reanalysis’s ET product is strongly

influenced by the landmodel underlying it, and the same

land model is used in both MERRA-2 and the GEOS

S2S system. Thus, we do not pretend here to quantify

true ET forecast skill. (Note that ET itself is rarely

measured directly and that existing gridded ET data-

sets are themselves subject to significant uncertainties.)

Despite this limitation, our ET evaluation has relevance.

In effect, the MERRA-2 estimates will differ from the

SubX forecasts only through MERRA-2’s application

of year-specific time series of net radiation and gauge-

corrected precipitation for each 30-day time period in

question. Using MERRA-2 ET to evaluate SubX ET

and the ProjET estimates will accordingly tell us how

much of the MERRA-2 ET product is associated with

meteorological forcing during that period as opposed to

the soil moisture state at the beginning of that period.

The evaluation of the T2M forecasts will be more

stringent. Evaluations against MERRA-2 T2M data,

which, as for ET, are limited by the use of a common

land model, are supplemented here with evaluations

against the independent, fully observations-based CPC

temperature dataset (https://www.esrl.noaa.gov/psd/data/

gridded/data.cpc.globaltemp.html). The CPC T2M data,

provided at 0.58 3 0.58 resolution, are generated from

station observations, and these observations are suitably

dense over CONUS and neighboring areas, our focus in

this paper. Note, however, that only daily minimum and

maximum temperatures (Tmin and Tmax, respectively)

are provided in the CPC dataset; in this study, we

approximate a given day’s observed average tempera-

ture as 0.5(Tmin 1 Tmax).

For each evaluated field, the mean seasonal cycle

was computed over the SubX period (1999–2015) and

then subtracted from each year’s time series prior to

computing statistics. This is done to avoid quantifying

‘‘false’’ skill associated with the reproduction of the

seasonal cycle. We use the square of the correlation (r2)

between forecast and observed time series as our main

metric of forecast skill.

3. Results

a. Sample ProjET calculation

Figure 5 provides a sample calculation for a grid cell

centered in Missouri (37.58N, 93.128W) and for a start

date of 5 July, so that ProjET is being computed for the

period 20 July–3 August. As noted in Fig. 2, 19 different

self-consistent sets of daily rainfall and net radiation

forcing data covering 5 July–3 August (one set extracted

from each year in 1980–98) are available for use in

Eq. (4) to estimate ET for the target year. Figure 5a

shows the 19 estimates for 20 July–3 August 2009 ET

produced through the integration of Eq. (4) with these

19 sets of forcing, each integration being initialized with the

known initial soil moisture on 5 July 2009. The ET esti-

mates range from 2.7mm day21 (based on the ‘‘random’’

set of forcing extracted from 1980) to 5mm day21 (based

on the forcing from 1992). The distribution represented by

these estimates is summarized with the box-and-whisker

plot in Fig. 5b, with the whiskers providing the maximum

and minimum estimates, and with the edges of the box

(defining the ‘‘spread’’) showing the 25th- and 75th-

percentile values. The mean of the 19 estimates is shown

as a dot; this is the ProjET defined in Eq. (6).

Each year during 1999–2015 has its own 5 July soil

moisture value, and thus a histogram like that in Fig. 5a

can be produced for each year using the same 19 sets of

daily forcing data. A box-and-whisker representation, as

in Fig. 5b, can accordingly be derived from each year’s

histogram. Figure 5c shows the box-and-whisker repre-

sentation obtained in this way for each of the 17 years in

the period 1999–2015, plotted against that year’s initial

(5 July) soil moisture value. The impact of initial soil
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moisture on the ET estimates is clear. 5 July soil mois-

tures during 2006 and 2012 were relatively dry, and thus

the ProjET (represented by the blue dots) for these

years is low, just under 3mm day21. In contrast, the

5 July soil moistures for 2007, 2008, and 2015 were rel-

atively wet, and the ProjET for these years is accordingly

higher, about 5mmday21. As might be expected, ProjET

never decreases with increasing initial soil moisture.

An additional interesting feature of Fig. 5c is the

sensitivity of the range of the ET estimates to the

initial soil moisture. The wetter initial conditions

produce a distinctly smaller range, which can be in-

terpreted as a reduced uncertainty in the ET estimation

using this framework (section 3d).

Figure 5d repeats Fig. 5c but with the addition of the

‘‘observed’’ 20 July–3 August ET (orange dots) for each

year during 1999–2015, as extracted from MERRA-2

output. The word ‘‘observed’’ is in quotes because again,

the MERRA-2 estimates are effectively model-based

estimates produced by the same model underlying the

relationships illustrated in Fig. 1. Still, the comparison

does indicate the degree to which the simple frame-

work embodied in Eq. (4), when combined with the

range of daily precipitation and net radiation time

series extracted from an independent MERRA-2

time period, can capture the ET produced by the

MERRA-2 system in a specific year. The results are

positive: the ranges represented by the box-and-whisker

plots are seen, in general, to encompass the MERRA-2

ET values. The two exceptions are 2010 and 2012,

for which the MERRA-2 values lie outside the indi-

cated ranges. A linear fit to the scatterplot (not shown)

of the blue dots in Fig. 5d (the ProjET estimates)

against the orange dots (the MERRA-2 values) is

characterized by an r2 of close to 0.5, implying that,

for this location and day of year, the initial soil

FIG. 5. (a) Histogram showing the different 16–30 Jul 2009 ET estimates for a central U.S. grid cell generated with the simple

model when initialized with the cell’s 5 Jul 2009 soil moisture. The different estimates arise from the different P and Rnet forcing

time series used; these time series are extracted from an independent MERRA-2 period (1980–98). (b) The histogram in

(a) summarized as a box-and-whisker plot, with the line representing the full range, the box representing the 25th and 75th

percentiles, and the blue dot representing the mean (i.e., the ProjET). (c) Box-and-whisker plots for the corresponding ET

estimates computed for each year in 1999–2015 as a function of the soil moisture content (in degree of saturation; dimensionless)

on 5 Jul of that year. (d) As in (c), but with the corresponding MERRA-2 16–30 Jul average ET values overlaid on the plot as

orange dots.
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moisture explains roughly one-half of the variance of

MERRA-2 ET at a lead of 16–30 days. Such agreement

is in fact typical across CONUS, as illustrated in

section 3b.

b. Relevance of framework to subseasonal
ET forecasts

For each SubX forecast with the full GEOS S2S system

(section 2d), we can calculate, at each location, the ET

forecast over days 16–30. Arguably, we can also interpret

ProjET, as defined in Eq. (6), as an ensemble mean fore-

cast of ET, with 19 contributing ‘‘ensemblemembers’’ that

account for 19 different ways that precipitation and net

radiation might have manifested themselves during the

forecast period. Note that both the SubX and ProjET

forecasts make use of information contained in the initial

soil moisture content to estimate ET.As a result, the SubX

forecasts and ProjET estimates will differ only because the

SubX forecasts also make use of information contained in

forecast meteorological drivers such as precipitation, wind

speed, air temperature, incoming radiation, and specific

humidity. Of course, differences could also stem from the

simplicity of the energy balance framework relative to

the full GEOS land surface model; given Fig. 3, how-

ever, we suspect that this would not be amajor issue.We

expect that if SubX shows low skill in predicting mete-

orological drivers, the skill in the SubXET forecasts and

ProjET estimates should be similar.

We examine the agreement between the SubX ET

forecasts and the ProjET estimates in Fig. 6. Results are

shown for the combined 5 June, 20 June, 5 July, 20 July,

4 August, and 19 August start dates. Given the 17 years

of the SubX period, this amounts to 102 data pairs going

into each r2 calculation.

The r2 values across CONUS are high, generally

above 0.5 except in the southwest. [The low values in

the southwest may reflect a low soil moisture memory

in the region, a feature indicated for an earlier version

of this land–atmosphere modeling system (Seneviratne

et al. 2006; see the NSIPP panel in their Fig. 5).] The

values across CONUS are indeed often above 0.7.

Figure 6 indicates that across most of CONUS, the

simple framework embodied in Eq. (4) is able to

capture the majority of the ET behavior (i.e., it gen-

erally explains 50% or more of the variance in ET) at

subseasonal leads produced by the much more com-

plex and comprehensive GEOS S2S forecast system.

We can thus infer that at least half (and often much

more than half) of the forecast ET behavior in the full

system comes from soil moisture initialization rather than

from the forecast model’s ability to capture variations

in the subseasonal meteorological forcing stemming,

for example, from remote SST conditions, atmospheric

modes like the MJO, and so on.

Whereas Fig. 6 compares the ProjET estimates with

the SubX ET forecasts, Fig. 7 compares both with the

MERRA-2 reanalysis ET estimates. When MERRA-2

is used as ‘‘truth,’’ ProjET captures essentially all of the

subseasonal ET forecast skill produced by the GEOS

S2S system. Apparently, at least in terms of predicting

evapotranspiration, the full S2S system’s ability to pre-

dict explicit meteorological forcing over CONUS during

the first month of the forecast does not give it an edge

relative to consideration of initial soil moisture alone,

through ProjET. The comparison of Figs. 7a and 7b

speaks to the overwhelming importance of soil moisture

initialization for ET forecasts.

In fact, the skill levels for ProjET often exceed those

for the SubX forecasts, as indicated in Fig. 7c. Further

testing indicates that the apparent higher skill levels

shown for ProjET reflect sampling, i.e., the fact that the

ProjET estimates are based on 19 possiblemanifestations

FIG. 6. The square of the correlation between the average ET produced by the full GEOS

S2S forecast system over days 16–30 of the forecast and the corresponding ProjET value,

which in essence varies only with the initial soil moisture. Statistics at each grid cell

are computed from 102 data pairs: six 15-day periods per year (for forecasts initialized in

June–August) over 17 years.

1714 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/08/21 07:37 PM UTC



of precipitation and net radiation forcing during the

forecast period whereas the SubX estimates are based

on only four ensemble members. We state this because

when the calculations underlying the ProjET skill in

Fig. 7b are instead based on only four precipitation and

net radiation time series (i.e., from four years sampled

randomly from 1980 from 1998), the agreement between

the two maps increases considerably (Fig. S2 in the on-

line supplemental material), and there is even an indi-

cation that the full S2S system performs slightly better

than ProjET along the Gulf Coast. This result speaks

to the importance of adequate sampling–an adequate

number of ensemble members–in S2S forecasts.

c. Relevance of framework to subseasonal air
temperature forecasts

Section 2c above describes our rationale for using

aProjET anomalies (aDProjET) as surrogates for T2M
anomalies at 16–30-day lead. Figure 8 shows the square

of the correlation between DProjET (and thus aDProjET)

FIG. 7. (a) Square of the correlation coefficient between the average ET produced by the

full GEOS S2S forecast system over days 16–30 of the forecast and the corresponding truth,

as represented here by MERRA-2 ET estimates. Statistics at each grid cell are computed

from 102 data pairs: six 15-day periods per year (for forecasts initialized in June–August) over

17 years. (b) As in (a), but for the comparison between ProjET and theMERRA-2 estimates.

(c) Differences: (a) minus (b).
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and the corresponding forecast T2M anomalies produced

by the GEOS system for SubX, based on the same 102

periods spanning June–August of 1999–2015. Higher

values (.0.5) are limited to the eastern half of CONUS;

in the areas with these higher values, it appears that at

least half of the variance of the T2M predictions pro-

duced by the GEOS S2S system stems specifically from

soil moisture initialization. Obviously, though, other

factors also contribute to the T2M forecast by the full

system, as very few areas in Fig. 8 show an r2 exceeding

0.6. Such other factors include the advection of warm

or cool air masses from remote regions and variations

in cloudiness and associated radiative forcing. Again,

a full S2S forecast system can account for such factors,

whereas the simple framework embodied in Eq. (4)

cannot.

How successful are the SubX forecasts in predicting

observed temperature T2M, and to what extent is this

skill captured by aDProjET? The r2 skill scores pre-

sented in Fig. 9, based on the same 102 periods, use two

different sources for the T2M truth: 1) T2M from

MERRA-2, and 2) T2M from the stations-based CPC

dataset (section 2e). Figures 9a and 9b show a significant

difference in SubX skill depending on the target, with

the SubX estimates matching the MERRA-2 estimates

more closely (higher r2 values of;0.3–0.4) than the CPC

estimates (higher r2 values of;0.2). This, in fact, speaks

strongly to the model dependence of reanalysis-based

surface temperatures. The closer connection of the

SubX results to the MERRA-2 estimates very likely

reflects the use of the Catchment land model in both

systems.

Figures 9c and 9d show the corresponding r2 skill

levels when the aDProjET values are used as the tem-

perature forecasts. Information in the initial soil moisture

content, as captured by aDProjET, is seen to account

for a large portion of the SubX temperature forecast

skill, regardless of which data source is used for truth.

The comparison of Figs. 9a and 9b with Figs. 9c and 9d

indeed underlines the importance of soil moisture

initialization for subseasonal air temperature forecasts

during the warm season. Again, though, soil moisture

initialization, as important as it is, is not the only player.

By subtracting the aDProjET skill levels (Fig. 9c or 9d)

from the corresponding SubX skill levels (Fig. 9a or 9b),

we obtain the residual skill in SubX T2M prediction

(Fig. 9e or 9f), i.e., skill drawn from other facets of the

full S2S forecast system. These residual skill distri-

butions in fact look very similar, despite the low levels

of significance for the differences. Values of about

0.1 cover much of the southeastern third of CONUS;

we can speculate that this reflects the ability of SubX to

account explicitly for interannual variations in the ad-

vection of warm or cool air onto the continent from the

Gulf of Mexico, depending on a given year’s SST there.

(Such factors may very well have a greater impact on

T2M than on ET.) Note that, to emphasize the residual

aspect of this difference, negative differences are not

highlighted in Figs. 9e and 9f. If they were, we would see

that the aDProjET skill levels are in fact higher in some

parts of the west. In such areas, some aspect of the SubX

system–perhaps the small ensemble size–is degrading

the ability of the initial soil moisture information to

contribute to the temperature forecasts.

d. Relevance of framework to the estimation of
forecast uncertainty

Figure 5c shows a clear, soil moisture–dependent

distinction in the spread of the ET estimates underly-

ing ProjET at a particular grid cell–a drier soil moisture

initialization leads to a larger spread in the individual

estimates than does a wetter initialization. This spread

FIG. 8. Square of the correlation coefficient between the average T2M produced by the full

GEOS S2S forecast system over days 16–30 of the forecast and the corresponding estimates

tied to the computed ProjET values. Statistics at each grid cell are computed from 102 data

pairs: six 15-day periods per year (for forecasts initialized in June–August) over 17 years.
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FIG. 9. (a) Square of the correlation coefficient between the average T2M produced by the full GEOS S2S

forecast system over days 16–30 of the forecast and the corresponding truth, as represented here by MERRA-2

T2M estimates. (b) As in (a), but with the truth being the gridded CPC station-based T2M observations. (c) As in

(a), but comparing the ProjET-based T2M estimates with the MERRA-2 T2M data. (d) As in (b), but comparing

the ProjET-based T2M estimates with the gridded CPC T2M data. (e) Differences: (a) minus (c). (f) Differences:

(b) minus (d). All r2 values greater than 0.054 in (a)–(d) are significantly different from zero at the 99% confidence

level based on Monte Carlo analysis.

AUGUST 2020 KOSTER ET AL . 1717

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/08/21 07:37 PM UTC



has distinct relevance for the uncertainty of the ProjET

estimate and (based on the results in section 3b) for

the uncertainty of the ensemble mean GEOS S2S ET

forecast. A larger spread naturally implies a larger

uncertainty.

A look at the spread inherent in the ProjET calcu-

lations is provided in Fig. 10. Figure 10a shows the

distribution of the spread for a relatively dry soil

moisture initialization. For each of the six start dates

considered for the June–August period, we compute

(for a given grid cell) the spread, as defined in Fig. 5b,

for the second-driest (corresponding approximately

to the 10th percentile) of the 17 initializations. For

example, for the 20 June start date, we find the spread

for the second-driest 20 June between 1999 and 2015

at the grid cell in question. We then average the six

spreads into a single value for plotting. Figure 10b

shows the corresponding average spread for the ini-

tialization with the median dryness, and Fig. 10c shows

the average spread for the second-wettest (approxi-

mately the 90th percentile) of the 17 initializations.

The spread clearly decreases in southeastern CONUS

and in the central Great Plains with increasing initial soil

moisture. Sensitivity of spread to initial soil moisture is

FIG. 10. Spread (see Fig. 5b for definition) of the ET estimates (mm day21) underlying

ProjET for the particular year in 1999–2015 with the (a) second-to-driest, (b) median, and

(c) second-to-wettest initial soil moisture content. Each plotted value is an average over six

values, one for each forecast start date during June–August.
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also seen in the east but is relatively absent in the

western half of the continent.

Why should spread tend to decrease with increasing

initial soil moisture content? The simple answer involves

the shape of the FE(W) relationship in Fig. 1a. Regardless

of the time series of P and Rnet forcing applied, a soil

moisture initialized wetmight tend, over the course of the

30-day integration of the simple model, to remain mostly

in the wet regime, i.e., in the regime for which ET varies

little. Different forcing time series would accordingly give

similar values for the 16–30-day ET, inducing low spread.

In contrast, a soil moisture initialized dry will more likely

start in the drier, soil moisture–controlled evapotranspi-

ration regime and thereby produce ET rates that respond

muchmore strongly to the forcing time series, with rainier

time series tending to produce higher ET values. The

spread would accordingly be high. This idea indeed ex-

plains why the variations in Fig. 10 are maximized in the

center of the continent, as this is where relatively wet and

dry soil moistures for any of the six forecast periods are

most likely to lie in the two very different hydrological

regimes. The idea is further supported by a supplemental

analysis in which the shape of the FE(W) relationship was

forced to be linear—rather than the binned fit shown in

Fig. 1a, linear regression was used to fit a single line

through the points. Under this simplification, the varia-

tions in spread indicated in Fig. 10 were dramatically

reduced (Fig. S3 in the online supplemental material).

Because ET and T2M are connected, the variations in

spread seen in Fig. 10 have important implications for air

temperature forecasts. Presumably, a low spread in the

ET estimates underlying ProjET should be consistent

with a low spread underlying the T2M forecast produced

by the full S2S system, as characterized by the range

of predicted anomalies across the forecast’s ensemble

members. Such a connection is illustrated in Fig. 11.

Figure 11a shows, in analogy to Fig. 5c, how the spread

of the 20 July–3 August ET estimates from the simple

framework varies with initial soil moisture at a central

U.S. grid cell. Figure 11b shows, for each year, the cor-

responding SubX T2M forecasts, with the individual

prediction from each ensemble member shown sepa-

rately. The range (across ensemble members) underly-

ing the S2S system’s T2M forecast clearly tends to be

larger when the range underlying the ProjET estimates

is larger. At this location and day of year, the GEOS S2S

system’s ‘‘confidence’’ in its subseasonal temperature

forecasts appears to be a strong function of the initial

soil moisture content, in a way consistent with the spread

underlying the ProjET calculation.

A proper statistical demonstration of this idea must

await the advent of the next generation of the GEOS

S2S system, which will provide forecasts on certain dates

with a much greater number of ensemble members

(Molod et al. 2020). Simply put, four ensemble members

is inadequate for obtaining robust statistics. Still, even

with four ensemble members, we can generate some

preliminary results. Figure 12 shows, for the 16–30-day

period after the 5 July start date, the correlation be-

tween the spread in the ET estimates generated with the

simple framework (as defined in Fig. 5b) and the range,

across the ensemble members, of the T2M values pro-

duced in the GEOS SubX forecasts. The small number

of ensemble members naturally induces some noise in

FIG. 11. (a) Box-and-whisker representation of the 20 Jul–3 Aug ET values underlying the ProjET for each year in

1999–2015, plotted against the soilmoisture on 5 Jul of that year (i.e., as in Fig. 5c, but for a different grid cell). (b) T2M

temperature anomalies for 20 Jul–3 Aug (for forecasts initialized on 5 Jul) as produced by the full GEOS S2S system,

plotted against the soil moisture on 5 Jul. Each forecast consists of four ensemble members; the anomaly (relative to

climatology) for each ensemble member is plotted separately to provide a rough estimate of the range.
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the field. Nevertheless, we see generally positive values,

particularly along a north–south swath down the center

of the continent, largely coincident with the area of high

ET spread seen in Fig. 10a.

Together, Figs. 11 and 12 suggest that the spread un-

derlying the ProjET calculation can tell us something

about the spread in the ensemble T2M forecasts pro-

duced by the GEOS S2S system. Although more work

is needed to address this problem, these preliminary

calculations suggest that the simple framework could

provide information on the uncertainty of the T2M

forecasts–how wetter soils, for example, may lead to

forecasts with reduced uncertainty.

4. Summary and discussion

We examine in this study how soil moisture influences

the skill and uncertainty of the subseasonal ET and

T2M forecasts produced by the GEOS S2S, version 2,

forecast system. We do this by representing the soil

moisture–related aspects of the full system with a simple

framework built around the water balance of the soil

column. The net behavior of multiple interacting, com-

plex processes within the land model–interactions that

are difficult, if not impossible, to understand a priori

through an analysis of the land model’s governing

equations–are effectively captured with fitted functions

that relate evapotranspiration efficiency and runoff ef-

ficiency to soil moisture content (Fig. 1). Under the

simple framework, these fitted functions are used in

conjunction with the water balance equation to evolve a

soil moisture state forward in time in response to daily

P and Rnet forcing. To produce the projected evapo-

transpiration, or ProjET, at a lead of 16–30 days (and

thereby the corresponding T2M anomaly at this lead),

we use multiple representative, but independent, time

series of P and Rnet to generate a distribution of ET

estimates for days 16–30. We then average these estimates

into the single ProjET value.

The ProjET is found to capture very well the sub-

seasonal ET values forecast by the full S2S system

(Fig. 6). Because ProjET at a given location and day

of year varies only with initial soil moisture, we thus

conclude that the subseasonal ET forecasts produced

by the S2S system are largely determined by the soil

moisture initialization. Other facets of the full sys-

tem, such as its ability to forecast variations in wind

speed, humidity, rainfall, and so on, have an accord-

ingly small overall impact.

The interpretation of ProjET anomalies as proxies

for T2M anomalies is based on the simple idea that

an anomalously high ET implies a cooling of the local

land–atmosphere system; some of the absorbed radia-

tive energy that would normally be transferred to the

near-surface atmosphere through the sensible heat flux

is instead used to evaporate the land moisture. The as-

sumption in Eq. (7) that ET anomalies are directly pro-

portional to T2M anomalies is meant to be nothing more

than a crude approximation, with the potential limits to

this approximation clearly indicated in Fig. 4, which

shows the square of the correlation coefficient between

summertime ET and T2M anomalies in MERRA-2.

Still, despite its crudeness, the equation apparently does

capture a true link between ET and T2M – the simple

framework, through Eq. (7), captures much of the T2M

behavior in the full S2S system. We indeed arrive at a

conclusion for T2M analogous (though more muted) to

that for ET: the subseasonal T2M forecasts produced by

the full system during summer are significantly deter-

mined by the initial soil moisture content in central and

eastern parts of CONUS (Fig. 8).

Proper soil moisture initialization is indeed shown to

contribute substantially to summertime T2M forecast

skill (Fig. 9). The fact that the skill levels are higher

when the T2Mvalidation data are taken fromMERRA-2

rather than from the independent CPC station-based

dataset indicates that the MERRA-2 T2M data them-

selves are significantly influenced by the land model

parameterization. This raises an interesting question:

could the CPC station-based data be used to ‘‘tune’’ the

functional relationships FE(W) and FQ(W) in the model?

That is, could we find forms of these relationships

that maximize the skill levels that would be plotted in

Fig. 9d, and could those tuned relationships then be used

to guide further land model development, leading to a

land model with a more realistic connection to air tem-

perature? We leave such questions for future research,

noting only that the benefits of such an analysis could be

substantial.

FIG. 12. Correlation, for a representative summertime period

(16–30 days after the 5 Jul start date), between the spread un-

derlying the ProjET calculation (as defined in Fig. 5b) and the

range (across the four ensemble members) of the SubX T2M

forecasts.

1720 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/08/21 07:37 PM UTC



Another potentially fruitful line of inquiry involves

forecast uncertainty. A range of ET estimates underlies

any given ProjET value produced by the simple frame-

work, one estimate for each representative P and Rnet

time series applied. The spread in these estimates has

relevance to uncertainty estimation, particularly be-

cause the spread in many locations is seen to vary with

initial soil moisture content due to the nonlinear char-

acter of the soil moisture–evaporation efficiency func-

tion, FE(W). The preliminary calculation underlying

Fig. 12 provides hope that, through further analyses with

the simple framework, particularly in conjunction with

the next generation S2S forecast system, we can begin

assigning sensible, explainable uncertainty estimates to

individual subseasonal T2M forecasts.

One can imagine additional studies built around the

simple framework in Fig. 2b that could further elucidate

S2S forecast system behavior without the expense of

running a full series of S2S hindcasts. For example, the

impact of water-holding capacity on the evolution of soil

moisture during a forecast and on associated forecast

skill could be examined through imposed modifications

in the assigned water-holding capacity C; an extremely

high value of C would even allow the simple framework

to mimic an S2S system that artificially persists initial

soil moistures through a forecast–an approach relevant

to some early systems. Potential correlations between

initial soil moisture and subsequent meteorological forc-

ing (e.g., to represent land–atmosphere feedback) could

be artificially imposed on the precipitation and net ra-

diation time series applied, allowing us to quantify the

impacts of such correlations on the skill of forecast ET

and air temperature. Given the importance of accurate

forecasts in a number of socioeconomic sectors (with

forecast ET, for example, showing increasing relevance

for agricultural applications such as crop projections), a

basic understanding of what controls forecast skill

and its uncertainty would be invaluable. Simply put, it

should help us to extract as much skill as possible

from these systems. The simple framework outlined

here provides a useful means for analyzing and under-

standing how soil moisture contributes to forecast skill

at subseasonal leads.
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